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NEW STEADY AND SELF-SIMILAR SOLUTIONS OF THE EULER EQUATIONS

UDC 532.511+517.9E. Yu. Meshcheryakova

Exact steady and self-similar solutions of the Euler equations are considered, which possess the prop-
erty of partial invariance with respect to a certain six-parameter Lie group. New examples of vortex
motion of a swirled liquid in curved channels are presented. A classification is given for self-similar
solutions of the reduced system with two independent variables, which admits a three-parameter group
of extensions, whereas the initial system of the Euler equations possesses a two-parameter group.
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1. Group-Theoretical Nature of the Solution. We consider a partially invariant solution of the Euler
equations that describe rotationally symmetric motion of an ideal incompressible liquid [1]. For constructing the
partially invariant solution, the system of the Euler equations is written in cylindrical coordinates r, θ, z. The
projections of the velocity vector v onto the corresponding axes are denoted by u, v, and w. According to the
universal algorithm of constructing partially invariant solutions [2], the vertical component of velocity w is a
function of two variables: the vertical coordinate z and the time t, whereas two other components of velocity u and
v and the pressure p are independent of the polar angle θ:

w = w(z, t), u = u(r, z, t), v = v(r, z, t), p = p(r, z, t).

Substituting this representation of solutions into the Euler equations written in cylindrical coordinates, we
obtain the system

ut + uur + wuz − r−1v2 + pr = 0, vt + uvr + wvz + r−1uv = 0,

wt + wwz + pz = 0, ur + r−1u+ wz = 0,
(1.1)

which was considered in [3, 4]. From the last equation of (1.1), by integration (wr = 0), we can easily obtain the
function

u = −rwz/2 + q/r, (1.2)

where q(z, t) is a new unknown function. From the resultant overdetermined system, we can also find the velocity
component v [1]

v = r−1[r4(a+ s) + r2b− q2]1/2,

where a = −wzt/2− wwzz/2 + w2
z/4, b = qt + wqz, and the function s(r, t) is determined by solving the equation

r2(at + waz − 2wza) + r2st − r2wz(rsr + 4s)/2 + bt + wbz − wzb+ 4qa+ q(rsr + 4s) = 0.

In analyzing (1.1), one should consider several cases, each leading to a certain class of solutions that describe
swirling motion. For wzz 6= 0, the overdetermined system takes the form

ft + wfz + f2 − a = 0, at + waz + 4(a+ χ)f + χ̇ = 0,

qt + wqz − b = 0, bt + wbz + 2fb+ 4(a+ χ)q = 0,
(1.3)

where f = −wz/2.
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Writing system (1.3) in Lagrangian coordinates, we can note that it admits exact linearization. The class of
solutions for this particular unsteady case and examples of possible vortex flows are described in [3, 4]. Steady and
self-similar solutions corresponding to system (1.3) are considered in the present paper.

2. Steady Solutions. We consider steady solutions of system (1.3) assuming that w = w(z), a = a(z),
q = q(z), b = b(z), and χ = const. As a result, we obtain a system of equations with respect to w and q:

2ww′′ − w′2 + 4a = 0, wa′ − 2(a+ χ)w′ = 0, wq′ − b = 0, wb′ − w′b+ 4(a+ χ)q = 0. (2.1)

Note, the variables are separated in the second equation, and integration yields

a = Cw2/4− χ, (2.2)

where C is an arbitrary constant of integration.
Substituting the result obtained into the first equation of system (2.1), we obtain the second-order nonlinear

differential equation
2ww′′ − w′2 + Cw2 − 4χ = 0. (2.3)

Let us reduce the order of this equation by assuming that w′ = g(w). Then, by virtue of w′′ = w′ġ = gġ, Eq. (2.3)
takes the form

2wgġ − g2 + Cw2 − 4χ = 0.

Assuming further that g2 = h, we rewrite this equation as
wḣ− h− 4χ+ Cw2 = 0.

This equation has the general solution
h = C1w − Cw2 − 4χ

or (with allowance for the definition of h)
w′2 = C1w − Cw2 − 4χ. (2.4)

Solving Eq. (2.4), we obtain

w =

{
(C1 ±

√
C2

1 − 16χC sin (
√
C z − C2

√
C ))/(2C), C > 0, C2

1 − 16χC > 0,

(C1 ±
√

16χC − C2
1 sinh (

√
|C| z − C2

√
|C| ))/(2C), C < 0, C2

1 − 16χC < 0.
(2.5)

By virtue of the third equation of (2.1) and expression (2.2), the fourth equation of (2.1) reduces to the
simple equation

q′′ + Cq = 0,

whose solution has the form

q =

{
A1 sin (

√
C z) +B1 cos (

√
C z), C > 0,

A2 cosh (
√
|C| z) +B2 sinh (

√
|C| z), C < 0.

(2.6)

We find the streamlines on the basis of the definition dr/u = r dθ/v = dz/w or, in our case, dr/u = dz/w,
which yields w dr − u dz = 0. With allowance for (1.2), we obtain r2wz dz + 2rw dr − 2q dz = 0 or d(r2w)

− 2 d
( z∫

0

q dz′
)

= 0. Then, we have the equation for the surface formed by the streamlines:

r2w − 2

z∫
0

q dz′ = const. (2.7)

We denote the left side of Eq. (2.7) as ψ(r, z). Substituting (2.5) and (2.6) into (2.7), we find the dependence of r
on z:

r2(C1 ±
√
C2

1 − 16χC sin (
√
C z − C2

√
C ))/(2C) +A1 cos (z

√
C )/
√
C −B1 sin (z

√
C )/
√
C = const; (2.8a)

r2(C1 ±
√

16χC − C2
1 sinh (

√
|C|z − C2

√
|C| ))/(2C)

− 2A2 sinh (z
√
|C|)/

√
|C| − 2B2 cosh (z

√
|C| )/

√
|C| = const. (2.8b)
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Fig. 1. Streamlines calculated by formulas (2.8a) with the minus sign (a), (2.8b) with the plus
sign (b), (2.8a) with the plus sign (c), and (2.8b) with the minus sign (d) for C = 1, C1 = 1,
C2 = 1, A1 = 5, B1 = −10, and χ = −1 (a and c) and C = −1, C1 = 1, C2 = 2, A2 = 1, B2 = 1,
and χ = −1 (b and d).

Formula (2.8a) corresponds to the case C > 0 and C2
1 − 16χC > 0; formula (2.8b) corresponds to the case C < 0

and C2
1 − 16χC < 0. Hereinafter, we refer to Eq. (2.8a) if we use the constants A1 and B1 and to Eq. (2.8b) if we

use the constants A2 and B2.
The lines ψ(r, z) = const are streamlines in the meridional cross section. Following [5, 6], the set of levels

of stream functions will be called the flow portrait. By virtue of the large parametric arbitrariness (C, Ci, Ai,
Bi, and χ; i = 1, 2), there is a rather large class of flow portraits represented by various channels with branching.
Figure 1 shows some typical flow portraits; the cases with the plus or minus sign chosen in Eqs. (2.8a) and (2.8b)
are distinguished.

We determine the flow rate of the liquid through the cross section r = 0.6 for a chosen curved channel
(Fig. 1a). The inner and outer walls of the channel are specified by the equations ψ(r, z) = 11.355 and ψ(r, z) =
11.155, respectively, where the function ψ is determined by formulas (2.8). In our case, the flow rate equals
the product of π and the difference in the stream-function values. Solving the equations ψ(0.6, z) = 11.355 and
ψ(0.6, z) = 11.155, we find z1 = 0.660097 and z2 = 0.692672 for the upper branch of the channel and z1 = 0.384397
and z2 = 0.417106 for the lower branch. We denote the flow rate through the upper and lower branches of the
channel by Q1 and Q2, respectively. Finally, we obtain Q1 = −0.628 319 and Q2 = 0.628 319, i.e., the liquid comes
in through the upper channel and goes out through the lower channel, providing zero flow rate through a given
cross section as a whole.
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It is known that rotationally symmetric steady motion (swirling motions) of an ideal liquid can be described
by the Grad–Shafranov equation [5–7]

ψzz + ψrr − ψr/r = r2G(ψ) + F (ψ), (2.9)

where G and F are arbitrary functions of ψ. The cases of integrability of Eq. (2.9) and the characteristic flow
portraits can be found in [5–7]. It can be shown that the solution constructed in the present paper does not
enter any known class. Because of the explicit form of the stream function (2.8), we can introduce the notation
ψ = r2a(z) + b(z); substituting the latter into Eq. (2.9), we obtain

r2azz + bzz = r2G(ψ) + F (ψ). (2.10)

Denoting s = r2 and differentiating (2.10) in terms of s, we obtain the equation
G(ψ) + aFψ(ψ) + asGψ(ψ) = azz.

Substituting the expression for s, we obtain
G(ψ) + aFψ(ψ) + aGψ(ψ)(bzz − F (ψ))/(G(ψ)− azz) = azz. (2.11)

Differentiating Eq. (2.11) with respect to ψ, we find
2GGψ + a(FψG− FGψ)ψ − 2azzGψ − aazzFψψ + abzzGψψ = 0.

Then, we differentiate with respect to z:

az(FψG− FGψ)ψ − 2azzzGψ − (aazz)zFψψ + (abzz)zGψψ = 0.

Dividing by Gψ (assuming that Gψ 6= 0) and differentiating with respect to ψ, we obtain

az((FψG− FGψ)/Gψ)ψ − (aazz)z(Fψψ/Gψ)ψ + (abzz)z(Gψψ/Gψ)ψ = 0.

We divide this equation by az [note, az is not identically equal to zero, but we should assume that z 6= (2C2

√
C +

π)/(2
√
C )] and differentiate with respect to z. We obtain the following equation [here we also assume that the

quantity [(aazz)z/az)z is considered at points where it does not vanish]:(Fψψ
Gψ

)
ψ
− ((abzz)z/az)z

((aazz)z/az)z

(Gψψ
Gψ

)
ψ

= 0.

After differentiation with respect to ψ, this equation reduces to simple differential equations

(Gψψ/Gψ)ψψ = 0, (Fψψ/Gψ)ψψ = 0,

which, nevertheless, have no solutions in elementary functions

G =
∫

exp (kψ2 + lψ + n) dψ, F =
∫ (∫

(k1ψ + l1) exp (kψ2 + lψ + n) dψ
)
dψ,

where k, k1, l, l1, and n are arbitrary constants of integration.
Thus, a new class of partially invariant steady solutions of the Euler equations, which describes swirling

motions in curved channels, has been obtained.
3. Self-Similar Solutions. Since the group of extensions was not used in constructing the solutions from

[1, 3, 4], we present a two-parameter group of extensions for (1.1):

X1 = r ∂r + z ∂z + u ∂u + v ∂v + w ∂w + 2p ∂p, X2 = t ∂t − u ∂u − v ∂v − w ∂w − 2p ∂p.

For the reduced system (1.3), together with the equation f = −wz/2, there arises the problem of group classification
in terms of the element χ(t), which is not considered here. We take the function χ in the form χ = c/tn, where c
and n are constants. It should be noted that, for an arbitrary n 6= 2, system (1.3) admits only the trivial extension
transformation q → kq, b → kb (k = const). For n = 2, the group of extensions admitted by Eqs. (1.3) has three
parameters, and its generators have the form

Y1 = t ∂t − w ∂w − f ∂f − 2a ∂a + q ∂q, Y2 = z ∂z + w ∂w, Y3 = b ∂b + q ∂q. (3.1)

We consider three operators, which are a linear combination of operators (3.1): Y1 + βY2 + γY3, Y2 + δY3,
and Y3. Note, it is impossible to construct an invariant solution with respect to the operator Y3, since the necessary
conditions of its existence are not satisfied. In the case of the operator Y2 + δY3, the representation of solutions has
the following form (δ = const):

w = −2zϕ(t), b = zδψ(t), q = zδω(t).
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In this case, denoting a+ ct−2 = ±g2, we rewrite system (1.3) in the form

ϕ′ + ϕ2 − a = 0, (±g2)′ + 4(±g2)ϕ = 0, ω′ − 2δϕω − ψ = 0, ψ′ − 2δϕψ + 2ϕψ + 4(±g2)ω = 0. (3.2)

As it follows from the form of system (3.2), the first two equations are split and integrated separately. For instance,
by choosing the minus sign at g2, we find

ϕ′ + ϕ2 + g2 + c/t2 = 0, g′ + 2ϕg = 0.

Denoting ϕ+ g = λ and ϕ− g = µ, we obtain the Riccati equations for the functions λ and µ:

λ′ + λ2 + c/t2 = 0, µ′ + µ2 + c/t2 = 0.

Solving these equations and using the definitions of λ and µ, we obtain

ϕ =
1
4t

[
2 +
√

4c− 1
(

tan
(
−
√

4c− 1
2

ln t+
C1

√
4c− 1
2

)
+ tan

(
−
√

4c− 1
2

ln t+
C2

√
4c− 1
2

))]
,

g =
1
4t

[√
4c− 1

(
tan

(
−
√

4c− 1
2

ln t+
C1

√
4c− 1
2

)
− tan

(
−
√

4c− 1
2

ln t+
C2

√
4c− 1
2

))]
,

where C1 and C2 are arbitrary constants of integration.
For a + ct−2 = g2, the system for the functions ϕ and g reduces to the complex Riccati equation, which is

exactly solved in elementary functions.
Despite their linearity, the last two equations in (3.2) have no simple solutions and, hence, are not considered

here.
The widest class of self-similar solutions is obtained on the group with the operator Y1 + βY2 + γY3. We

denote the independent self-similar variable as ζ = zt−β , then the sought functions have the form

w = λ(ζ)/t2, a = µ(ζ)/t2, χ = c/t2, b = η(ζ)/tγ , q = σ(ζ)/tγ−1. (3.3)

Choosing β = −1, i.e., the self-similar variable ζ = zt, we substitute functions (3.3) into system (1.3):

2(λ+ ζ)λ′′ − 2λ′ − λ′2 + 4µ = 0, (λ+ ζ)µ′ − 2(λ′ + 1)(µ+ c) = 0,

(λ+ ζ)σ′ − (γ − 1)σ = η, η′(λ+ ζ)− η(λ′ + γ) + 4(µ+ c)σ = 0.
(3.4)

The second equation of the system yields

K(λ+ ζ)2 = µ+ c. (3.5)

We denote ν ≡ λ+ ζ. With allowance that ν′′ = λ′′, the first equation of (3.4) is rewritten as follows:

2νν′′ − ν′2 + 4µ+ 1 = 0.

By virtue of (3.5), we have 4µ = 4Kν2 − 4c. Then,

2νν′′ − ν′2 + 4Kν2 + 1− 4c = 0. (3.6)

To solve this equation, we use the same algorithm involved in solving Eq. (2.3). After integration of Eq. (3.6), we
obtain the equation

(ν′)2 = K1ν − 4Kν2 + 1− 4c,

which, in turn, has the following solution (by virtue of the definition of ν):

λ(ζ) = −(8ζK −K1 ±
√
K2

1 − 64cK + 16K sin (2
√
K ζ − 2K2

√
K ))/(8K); (3.7a)

λ(ζ) = −(8ζK −K1 ±
√

64cK −K2
1 − 16K sinh (2

√
|K| ζ − 2K2

√
|K| ))/(8K). (3.7b)

Formula (3.7a) is valid for K > 0 and K2
1−64cK+16K > 0; formula (3.7b) is valid for K < 0 and K2

1−64cK+16K <

0 (K, K1, and K2 are arbitrary constants of integration).
The last two equations in (3.4) are split from the first two equations, but they have a simple analytical

solution for γ = 1 only. In this case, the equations are simplified:

(λ+ ζ)σ′ = η, η′(λ+ ζ)− η(λ′ + 1) + 4(µ+ c)σ = 0.
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Fig. 2. Solutions of equations (3.7a) with the minus sign (a) and (3.8a) (b) (K = 1, K1 = 1, K2 = 1,
K3 = 2, K4 = 3, and c = −1).

Substituting the expressions for η into the second equation and using (3.5), we obtain a simple equation with respect
to σ

σ′′ + 4Kσ = 0,

whose solution has form similar to (2.6):

σ = K3 sin (2
√
K ζ) +K4 cos (2

√
K ζ), K > 0; (3.8a)

σ = K5 cosh (2
√
|K| ζ) +K6 sinh (2

√
|K| ζ), K < 0. (3.8b)

Figure 2 shows the dependences λ(ζ) and σ(ζ) for particular values of parameters.
It should be noted that, for γ = 1, the function q (density of sources or drains) coincides with the function σ.

Therefore, the solution obtained can be considered as the motion induced by sources and drains distributed along
the z axis with a period πt−1. The spatial period tends to zero as t → ∞, which means concentration of vortex
sources at the axis of symmetry.
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